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Abstract 

 
The diffusivity in alloys at low temperatures is modeled for 
composition-modulated structures using Khachaturyan’s 
microscopic theory of diffusion. The theory is now applied 
to assess a two-phase multilayer system. 

 
Introduction 

 
A composition-modulated structure is composed of an 
artificial concentration wave as, e.g., formed by a repeating 
and alternate vapor deposition of the constituents.[1] The 
interdiffusivity coefficient (ĎB) is determined by analyzing 
the decay of the composition fluctuation (from thermal 
anneal treatments) using the microscopic theory of 
diffusion.[2-5] The bulk diffusivity (Ď) represents the long 
wavelength approximation of ĎB. That is, a multilayer with 
an infinite composition wavelength is equivalent to a 
macroscopic diffusion couple. A curvilinear fit to the 
variation of the ĎB with the dispersion relationship (B2) 
yields Ď (at B2 equal to zero).[1,5] The dependency of ĎB 
on structure is evident in the derivation for B2 that accounts 
for the specific growth orientation and composition 
wavelength of the multilayer accounting for the possible 
effects of crystalline anisotropy. Diffusion kinetics are 
quantified using x-ray scattering measurements. Satellites 
about Bragg reflection(s) are a consequence of the 
difference in scattering intensity that results from the short-
range order, i.e. the composition modulation along the 
growth direction of the film. Also, grazing-angle satellites 
can be used for assessing the diffusion kinetics as, e.g., of 
amorphous layered structures.[6] For crystalline multilayer 
materials, the high angle Bragg reflection(s) ideally provide 
the crystallographic reference required to appropriately 
determine B2. The advantage of the discrete theory in 
comparison to the continuous theory is its application to 
describe ordering, spinodal decomposition, and artificial 
composition modulations in disordered solutions where the 
behavior at short wavelengths is of interest. In addition to 
the treatment of fcc and bcc single-phase multilayers, as 
Cu/Ni [7] and Cr/Ti [8], the microscopic theory of diffusion 
is presented to assess the two-phase face-centered-cubic 
(fcc)/body-centered cubic (bcc) multilayer combination of 
Ni/(Cr,Mo) [9]. The low-temperature diffusion data from 
composition-modulated films provides a direct comparison 
with high-temperature tracer diffusion results [10]. 

Theory 
 
The integrated satellite intensity Ii(t), each of reflection 
order (i), is normalized to the Bragg peak intensity IB(t). 
The decrease in Ii(t) for the annealed samples with time (t) 
indicates a progressive homogenization of the composition 
fluctuation. The satellite intensities are proportional to the 
square of the composition profile amplitude. The relative 
decay in satellite intensity determines the amplification 
factor R(k) according to the expression [1-5] 

 ln{Ii(t)·[Ii(0)]-1} = 2R(k)·t. (1) 

The R(k) is related to the generalized interdiffusivity ĎB 
through the dispersion relationship B2(k) as [4] 

 R(k) = -B2(k)·ĎB. (2) 

The dispersion relationship B2(h) for fcc growth along the 
[100] or [111] is given by [4] 

 B2(h) = 2{1-cos(2πh)}·d(hkl)
-2 (3) 

where d(hkl) is the Bragg-reflection interplanar spacing, h 
equals d(hkl)·(dA/B)-1, and the composition wavelength for an 
A/B fluctuation (dA/B) equals 2π·k-1. Again, the dispersion 
relationship B2(h) for bcc growth along the [100] or [110] 
is represented by eqn. (3) whereas for [111] bcc growth the 
dispersion relationship is given by [4] 

 B2(h) = 2{1-cos3(2πh)}·{3d(hkl)
2}-1. (4) 

The dependency of the ĎB(s) on structure is found in the 
expressions for B2 which account for the multilayer 
periodicity and crystalline orientation. It may first appear at 
long wavelengths (dA/B) that ĎB will decrease linearly with 
B2(h) or perhaps inversely proportional to B2(h).[5-6] 
However, the use of a higher-order polynomial relationship 
is shown to universally fit the behavior of ĎB with B2(h). 
Thus, Ď is related to ĎB by the expression [5,9] 

 ĎB = Ď·{1 + Fe(h)·(ƒ")-1 + 2(ƒ")-1·Σ[Kµ·B2µ(h)]} (5) 

where Fe(h) is the Fourier transform of the elastic strain 
energy of the distorted lattice, ƒ" is the second derivative 
with respect to composition of the Helmholtz free energy 
per unit volume, µ is the order of the polynomial, and Kµ 
are the gradient-energy coefficients. In the long wavelength 
approximation, -B2(h) equals k2. Also, ƒ" and Kµ are 
identical with the expressions appearing in the continuous 



theories [11] or the discrete theory [12]. An expansion of 
the series expression for eqn. (5), yields 

 ĎB = Ď·[1+K'1·B2(h)+K'2·B4(h)+K'3·B6(h)+…] (6) 

where K'µ equals 2Kµ·[ƒ" + Fe(h)]-1. A plot of ĎB versus 
B2(h) fitted with a polynomial curve using eqn. (6) 
determines the diffusion coefficient Ď. 

 
Results 

 
Ni(111)24/(Cr2Mo)14 multilayers are annealed to decay the 
composition modulation.[9] The Cu kα x-ray diffraction 
scans (of Fig. 1) taken in the Θ/2Θ mode reveal the change 
of the satellite intensities with anneal time at 760 K. The 
two-phase (111)fcc/(110)bcc growth of the as-deposited 
8.1nm composition-wavelength film is confirmed in the 
(Fig. 2) electron diffraction pattern as taken in plan view.  

 
Figure 1. X-ray diffraction scans of the Ni/(Cr,Mo) film. 
 

 
Figure 2. An electron diffraction pattern of the as-

deposited 8.1nm Ni/(Cr,Mo) multilayer film. 

The normalized intensity of the (i=-1) satellite peaks for the 
Ni/(Cr,Mo) multilayers are plotted (in Fig. 3) as a function 
of the anneal time at 760 K for composition wavelengths of 
8.1 nm (from Fig, 1) as well as 5.0 and 3.3 nm.[9] The R(k) 
value for each is determined from eqn. (1) using a linear 
regression procedure to fit the variation of ln{Ii(t)·[Ii(0)]-1} 
with time.[5,9] Also, results are presented for a 0.9nm Ti/Cr 
film annealed at 473 K and a 2.1nm Cu/Ni film annealed at 
673 K.[7-8] Eqn. (3) is used to determine a single value of 
B2 for each fcc/bcc Ni/(Cr,Mo) multilayer. The ĎB values 
are next computed using eqn (2). A fit of the ĎB variation 

with B2 is accomplished using eqn (6) to yield the Ď value 
of 3.3x10-19 cm2sec-1. A classic Arrhenius variation of Ď 
with T-1 (plotted in Fig. 4) demonstrates the consistency of 
the low-temperature multilayer results obtained through the 
microscopic theory of diffusion with the high-temperature 
tracer diffusion data [10]. 

 
Figure 3. The satellites intensities decay with anneal time.  

 
Figure 4. The variation of ln[Ď (cm2s-1)] with T-1 (K-1) is 

plotted for tracer- and multilayer-diffusion data.  
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